解析:
证 (1):
由于 $f(x)$ 严格递增,当 $x \in (0, 1)$ 时有 $f(-x) < f(x)$,于是
$0 = \int_{-1}^{1} f(x) \mathrm{d}x = \int_{0}^{1} f(x) \mathrm{d}x + \int_{-1}^{0} f(x) \mathrm{d}x = \int_{0}^{1} f(x) \mathrm{d}x + \int_{0}^{1} f(-x) \mathrm{d}x$
$< \int_{0}^{1} f(x) \mathrm{d}x + \int_{0}^{1} f(x) \mathrm{d}x = 2a,$
即 $2a > 0$,得 $a > 0$.
证 (2):
容易知道 $F(x)$ 是二阶可导的,且:
$F(-1) = a(1 - (-1)^2) + \int_{1}^{-1} f(t) \mathrm{d}t = 0 + \int_{1}^{-1} f(t) \mathrm{d}t = 0$
(注:由已知 $\int_{-1}^{1} f(x)\mathrm{d}x = 0$ 知 $\int_{1}^{-1} f(x)\mathrm{d}x = 0$)
$F(0) = a(1 - 0^2) + \int_{1}^{0} f(t) \mathrm{d}t = a - \int_{0}^{1} f(t) \mathrm{d}t = a - a = 0$
$F(1) = a(1 - 1^2) + \int_{1}^{1} f(t) \mathrm{d}t = 0 + 0 = 0$
因为 $F(-1) = F(0) = 0$,根据罗尔定理,存在 $\xi_1 \in (-1, 0)$,使得 $F'(\xi_1) = 0$;
因为 $F(0) = F(1) = 0$,根据罗尔定理,存在 $\xi_2 \in (0, 1)$,使得 $F'(\xi_2) = 0$;
由于 $F'(x)$ 在 $[\xi_1, \xi_2]$ 上满足罗尔定理的条件,故必存在 $\xi \in (\xi_1, \xi_2) \subset (-1, 1)$,使得 $F''(\xi) = 0$.